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Introduction: 
 

Fibonacci was one of the earliest of the great modern European 

mathematicians. He is best known for the sequence of numbers that bears 

his name, but he made many useful contributions to mathematics, and this 

is the story of his life and achievements. 

Note: Numerical references refer to the numbered entries in the 

Bibliography. Symbolic references refer to footnotes on the same page. 

 

Who He Was: 
 

Leonardo Pisano (‘of Pisa’) was born sometime around 1170-1180 in 

Pisa, central Italy. In the late 12th century, Pisa was an independent city-

state, with a population of around 10,000.20 His father, Gulielmo Bonacci, 

was a merchant,20 scribe,19 customs manager10 or administrator1 

(depending on the source) for the Pisan government, and the name 

‘Fibonacci’ means ‘son of Bonacci’ or ‘of the Bonacci family’. The 

surname ‘Bonacci’ on the father is not absolutely certain, and the 

definition ‘fils du bonace’ (‘son of a good fellow’) as the origin of the 

word Fibonacci has been suggested. The name was first used by 

Guillaume Libri,8 a 19th century historian, who may also have been the 

first to apply the name to the sequence. 

When his father was stationed in Bougie (Bugia) in Algeria, Northern 

Africa, the young Leonardo went with him. There he received an early 

introduction to the Hindu-Arabic numerals and calculation methods, and 

he was taught by a Muslim teacher.5 Seeing numbers being used daily in 

his father’s business transactions, Leonardo gained an early interest in 

mathematics. As he became independent, Leonardo travelled widely 

around the Mediterranean, to Arabian ports, Egypt, Sicily, Greece, Syria, 

Constantinople, France, and of course Italy. Wherever he went, Leonardo 

took careful notice of the arithmetic and commerce systems in use, and 

visited and learned from as many local scholars as he could. Not a lot is 

known about his later life, other than he spent much of it in Pisa writing 

mathematical books, corresponding with various other people, and doing 

mathematics. He survived by commerce and accounting, and in 1240, he 

was honoured by the city of Pisa for his accounting and other services to 

the state, and was awarded an annual pension.19 This information was 

recorded on a marble tablet at the time. It is not known whether he ever 

married or fathered children. He died around 1250, possibly but not 

definitely in Pisa, as Pisa was defeated in a naval battle with Genoa 

around that time.20 



    

 

 
1: Pisa 2: Bougia 3: Palermo 4: Constantinople 

 

What He Wrote 
 

Leonardo returned to Pisa in about 1200, and there began to write his 

mathematical books. The first was Liber Abaci, ‘Book of the 

Abacus’/‘Book of Calculations’, which was finished around 1202 and 

was 15 chapters long, in 4 parts. It was also known as ‘Algebra et 

almuchabala’,3 a title taken from a work named ‘Al-Kitāb al-mukhtasar 

fīhisāb al-jabr wa’l muqābala’ by al Khowârizmî,20 who was one of the 

main influences for Liber Abaci. The influence of Abû Kâmil and 

Diophantus can also be seen.15 One of its main subjects was the Hindu-

Arabic number system, which Leonardo had found much better than the 

Roman numerals still being used in Europe at the time. One of the most 

important differences with the Roman numerals was the concept of a 

positional number system, and the associated idea of a ‘place holder’, or 

zero (known as a ‘zephirum’ from the Arabic ‘sifr’ meaning ‘empty’, also 

the root of the word ‘cipher’). He gave detailed explanations on how to 

read, write and perform addition, subtraction, multiplication and division 

with the ‘new’ numerals. Fractions were explained, as was the use and 

calculation of square and cube roots. Leonardo used the Arabic style of 

putting the fractional part of a mixed fraction to the left of the whole part, 

as opposed to the modern way on the right. He also used a horizontal bar 

in his fractions, a practice that did not become mainstream until the 16th 

century.5 The book also contained tables of unit fraction conversions for 

Provence 

Italy 

Sicily 

Egypt 

Arabia 

Syria 

Greece 

Algeria 



    

 

common fractions, as Leonardo either preferred unit fractions himself, or 

believed that those reading his work did.5 Modern style symbolic algebra 

was not available, and Leonardo wrote equations in a longhand text form, 

with ‘radix’ for , ‘quadratus’ for x2, and ‘cubus’ for x3.16 He also 

sometimes used ‘res’ to stand for an unknown quantity. These terms are 

translations of Arabic terms for the same quantities. Two methods for 

solving linear and quadratic problems are given, both false position and 

algebraic approaches. Leonardo ignored negative and imaginary roots to 

equations;10 although negative values are considered in some later 

problems, particularly those involving finance to allow the case of being 

in debt. Several cases of division were given as well, using the ‘scratch’ 

or ‘galley’ method for long division, which was a difficult process in the 

days of Roman numerals. 

Liber Abaci also contained applications of the new numbers to commerce 

and business transactions, such as bartering, partnership, alligation and 

pricing. The advantages of using geometry to solve algebraic problems 

are also shown in detail. 

Liber Abaci included a large number of mathematical problems and 

riddles, and their solutions. These include the aforementioned business 

practices, often with each problem in as many variations as possible; 

related topics such as inheritance; geometry, arithmetic and geometric 

progressions including the rabbit-breeding problem that gives rise to the 

Fibonacci sequence; quadratic equations, problems involving square and 

cube roots, various other patterns such as ‘perfect’ numbers (the sum of 

the divisors other than the number itself is equal to the number) and 

‘friendly’ numbers, and Diophantine equations. It also contained a 

version of the well known “As I was going to St. Ives...” riddle, although 

in this case it is presented as a serious problem in geometric series, and is 

about women, donkeys and bread. A similar problem, and calculated 

solution, was found on the Rhind papyrus (from 1650BC), involving 

wheat fields, but still the powers of 7.10 When the problem was turned 

into a riddle with a twist is unknown. The Liber Abaci remained a 

standard text for over two hundred years. 

 

Leonardo’s next important work was the Practica Geometriae, finished in 

1220. It was based on an Arabic version of Euclid’s ‘Division of Figures’, 

and was also influenced by Hero’s work on mensuration,5 and ‘Liber 

Embadorum’ (1145) from Plato of Tivoli, which was in turn a translation 

of a treatise on areas in Hebrew by Savasorda.15 The Practica Geometriae 

is mostly concerned with geometrical problems, some of which are 

solved using algebraic methods. It was fundamental to later studies of 

geometry. It also included problems and examples on measurement, with 

a proof of the formula to calculate the area of a triangle from the lengths 



    

 

of its sides, basically the same as Hero’s formula.* Also given was a 

three-dimensional version of Pythagoras’ Theorem. Trigonometric 

operations are dealt with, along with square and cube roots. Leonardo 

was also the first to realise that each square number is the sum of a series 

of odd numbers. Practica Geometriae also contained information on the 

use of the quadrans, a surveying instrument of the era.16 Leonardo used 

864/275 as an approximation to pi in his geometrical calculations, which 

is 3.1418…9 

 

In 1225, Leonardo was invited to take part in a mathematical tournament 

at the court of the Holy Roman Emperor, Frederick II. The Emperor had 

read Liber Abaci, and wanted to see the mathematical skill of its author 

for himself. Three problems were set by Johannes of Palermo, a scholar 

in the Emperor’s staff, and were sent out to the invitees in advance. 

Leonardo was presented to the Emperor by the astronomer Dominicus.6 

He gave correct answers to all three problems, while those selected to 

compete against him were stumped. 

 

The three problems were: 

1. Determine the values of x and y so x2 + 5 = y2 and x2 – 5 = z2. 

2. Solve x3 +2x2 + 10x = 20 for x. 

3. Three men have shares of a half, a third and a sixth in an unknown 

amount of money. From this total, each man takes a random 

amount. Then each man returned, of what he held, a half, a third 

and a sixth, respectively. This returned amount was divided evenly 

to all three, which gave each man exactly what he was entitled to. 

How much does each man have? 

(The first problems were given longhand, rather than algebraically). 

 

Leonardo solved all three. The first has a fractional solution, x = 41/12, 

y = 49/12, and z = 31/12.† 

The second problem could not be solved algebraically, and Leonardo 

proved why it has no rational solution and cannot be solved with a ruler 

and compass.5 He then gave an approximate result in sexagesimal 

fractions, 10 221 72 423 334 45 406, which is 1.3688081075, accurate to  

10-10. He gave no method for the calculation of this approximation.16 

The solution to the third problem was contained in one of Leonardo’s 

later books, Flos. The smallest whole solution is given as 47.16 

 

 
* See section ‘The Mathematics Involved’, Practica Geometriae, page 9 
† See section ‘The Mathematics Involved’, Liber Quadratorum, Proposition 17, page 16 



    

 

Soon after the contest, Leonardo finished two books in 1225. The first 

was Liber Quadratorum, ‘The Book of Squares’, which was dedicated to 

the Emperor Frederick II. The introduction contained details of both 

Leonardo’s meeting with the Emperor and the contest, particularly the 

first tournament problem. The book has 24 propositions, and is mostly 

concerned with problems involving squares and their solutions, but also 

involves determinate and indeterminate analysis, and makes use of the 

‘sum of odd numbers is a square’ property. The tournament problem 1 is 

detailed in Proposition 17. The book contains the identity: 

(a2 + b2)(c2 + d2) = (ac + bd)2 + (bc – ad)2 

                            = (ad + bc)2 + (ac – bd)2 

Also used in some of the propositions is the idea of ‘congruous’ numbers, 

used by Leonardo to descried numbers of the form ‘ab(a+b)(a-b)’. 

Proposition 12 shows that if a and b are relatively prime, the congruous 

number formed is a multiple of 24. For a more detailed examination of 

the Liber Quadratorum, see the section entitled ‘The Mathematics 

Involved’.13 

 

The other book written following the tournament was Flos, ‘Flower’ or 

‘Blossom’, which was also known as Flos Leonardi Bigollo Pisani super 

solutionibus quarundamquaestionum…19 Leonardo sometimes used the 

name ‘Bigollo’,19 meaning ‘fool’, as many people were sceptical of the 

new numbers that he introduced, so he made fun of himself with the 

name; or meaning ‘traveller’, as he was widely travelled. The book was 

concerned mostly with cubic equations, and contained both of the other 

problems from the tournament, but still no method for his approximate 

solution of the cubic problem. It is thought that he may have used 

‘Horner’s Method’, an Arabian method that may have originally come 

from the Chinese.5 Horner’s method is similar to the Newton-Raphson 

method of finding the root of an equation used today. He also considered 

indeterminate problems with methods that had not been much used since 

Diophantus, and used Euclidean methodology and Arabian and Chinese 

techniques, learned in his earlier travels, to solve determinate problems. 

 

He also wrote a letter to Theodorus (or Theodoris), entitled Epsistola ad 

Magistrum Theodorum,13 who was a philosopher in Emperor Frederick 

II’s court, soon after the tournament. In it, he again deals with the 

problems from the tournament. This is the only surviving letter written by 

Leonardo, and much of what is known about his life comes from it and 

the small biographies included in some of his manuscripts. 

 

In 1228, Leonardo revised the Liber Abaci, and dedicated it to Michael 

Scot, a Scottish acquaintance of his, who was chief astrologer to the 



    

 

Emperor and a writer of science texts.16 It is this version that became 

widely distributed around Europe, and was instrumental in the 

widespread adoption of the Hindu-Arabic numerals. 

The complete works of Leonardo were edited and published in 1862 by 

Baldassarre Boncompagni, under the title Scritti di Leonardo Pisano.1 

This may have been before the name ‘Fibonacci’ was given to him. 

 

Leonardo also wrote a book on commercial arithmetic entitled Di minor 

guisa, and possibly a piece on Book X of Euclid’s ‘Elements’. Both are 

unfortunately lost.13 

 

The Mathematics Involved 
 

Leonardo performs his general analysis using labelled line segments as 

his variables, giving physical meaning to the adding of variables. It is at 

times very hard to follow, so I will only use modern notation when 

algebra is required. 

 

Liber Abaci 

 

The problems given in this book include a version of the riddle ‘As I was 

going to St. Ives’. In Leonardo’s case, there are seven old women going 

to Rome, each bringing seven mules. Each mule carries seven sacks, and 

each sack contains seven loaves of bread. Accompanying each loaf is 

seven knives, and to protect each knife, there are seven sheaths. The total 

is shown to come to 7 + 72 + 73 + 74 + 75 + 76 = 137256. 

Leonardo also looks at problems involving inheritance, such as: 

A dying man gathers his sons around him to split up his wealth. To his 

first son, he gives one bezant and 1/7 of the remaining stockpile. To his 

second son, he gives two bezants and 1/7 of the remainder. To the third, 

he leaves three bezants and 1/7 of what’s left. This continues in the same 

fashion until the last son, who he gives the remaining amount to. The 

sons discover that all their shares are equal. How many sons did the man 

have, and how large was his estate? 

Various other problems are in the same vein; for example: 

A man sneaks into an orchard to steal some apples. He has to leave via 

the guarded gates, of which there are seven to pass through. At the first 

gate, he gives the guard half the apples he is carrying and one extra, to 

keep quiet and let him through. At the next gate, he again gives the guard 

half of the apples he has and one extra. This continues for the remaining 

fives guards, half plus one each. The man finally gets out of the orchard 

and has one apple left. How many apples did he have to start with? 



    

 

Problems involving progressions include: 

A lion is in a 50ft well (the problem has been converted into modern 

units). Each day, he can climb up 1/7 of a foot, and each night he slips 

back 1/9 of a foot. How many days does it take him to climb out? 

1/7 – 1/9 gives 2/63 feet up every 24 hours. 50/(2/63) = 1575, but the lion 

can get out as soon as he can reach the edge, so instead use  

(50 – 1/7)/(2/63) = 1570½. Therefore after 1571 days, he is close enough 

to climb past the lip the next day, on day 1572. 

The ‘rabbit problem’ that gives rise to the Fibonacci Sequence is also 

from Liber Abaci. For details of the problem, see the section entitled ‘The 

Fibonacci Sequence’. 

There are also simpler problems, many with a commercial connection: 

A man has seven pounds of silver. He wishes to make coins with two 

ounces of silver per pound. How much alloy must he add to the silver for 

this? 

 

Leonardo also gives examples of operations using the new Hindu 

numerals. I have included multiplication, and division by the ‘scratch’ 

method. 

Multiplication of 934 and 314: 

 Start with  

 

 

 

 

Multiplying 4 by 4 gives 16 

 

 

 

 

3  4 = 12, and add the 1 from 16 to the 2 

 

 

 

 

 

Continue for 4  9: 
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    1 

    3 
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    1 

    3 

9 3 4   

 1 3 6 4 

    1 

    3 

9 3 4   

3 7 3 6 4 
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    3 



    

 

Multiplying by 1 and 3 follow the same procedure, resulting in: 

 

 

 

 

 

The numbers in the grid are added along the diagonal, with the unit digit 

of each total lining up with the start of each diagonal in the top row:  

The unit of the solution is 6, then 3+4 = 7, 7+3+2 = 12, carrying 1 to the 

next total, 3+9+0(+1) = 13 carry the 1, 8(+1) = 9, and 2 = 2. Therefore the 

answer is 293276. 

 

 

 

 

 

Leonardo investigates two types of division, the first case being division 

of a large number by a single digit number, which is done in the standard 

modern way. The second case is for two multi-digit numbers, for which 

Leonardo uses the ‘scratch’ method: 

An example given is 65284 ÷ 594 = 109, remainder 538. 

 

Begin with  

 

5 goes into 6 once, with a remainder of 1: 

Cross out the numbers that have been ‘used’. 

 

Subtract the ‘9’ in 594 from the ‘15’ now evident in the dividend, putting 

the result, 6, next to the 1 and crossing out the numbers ‘used’: 

 

 

4 from 62 gives 58: 

 

 

 

Now re-write 594 underneath the first 594, shifted over one place: 

594 is larger than 588, so a 0 is written in the quotient, and 594 is  

moved over again: 

 

 

 

 

 

9 3 4   

3 7 3 6 4 

 9 3 4 1 

2 8 0 2 3 

9 3 4   

3 7 3 6 4 

 9 3 4 1 

2 8 0 2 3 

    

    

    

 
2 9 3 2 7 6 

 

65284) 

594 1 remainder 

65284)1 quotient 

594 

16 

65284)1 

594 
  5 

168 

65284)1 

594   5 

168 

65284)1 

5944 

  59 

  5 

168 

65284)10 

59444 

  599 

    5 



    

 

 

10 × 594 is larger than 5884, so work with 9: 

 

 

 

5 × 9 is 45, and 58 – 45 is 13: 

 

 

 

 

 

138 – 9 × 9 = 57: 

 

 

 

74 – 4 × 9 = 38: 

 

 

 

 

Therefore the result is 109, with a remainder of 538, as expected. 

 

Leonardo also included problems with a commercial basis: 

Two men, A and B, have some denarii each. If B gives A 7 denarii, A 

will have five times the amount B has. If A gives B 5 denarii, B will have 

seven times A’s amount. How much do A and B have? 

I could not find Leonardo’s solution, but my own calculations give: 

A has 7 2/17 denarii, and B has 9 14/17 denarii. 

Interest on an investment is also treated: 

A man puts 1 denarius into an account. After 5 years, it has doubled to 2 

denarii, and continues doubling every 5 years. How much will he have 

gained in 100 years? 

Again, the details of the method used by Leonardo were not found, and 

my own calculations give a total of 220 =1048576 denarii, a gain of 

1048575. 

Leonardo’s strange method of writing fractions appears in another 

example found in Liber Abaci: 

5rotulus. a of  worth is bizantium a of then 

bizantium, a of  worth is rotulus a of  If

12  149  10  4

11   83   8    3

10  9  8

7   4  1

5

2

6

1

7

1

3

2

4

1

  

  5 

168 

65284)109 

59444 

  599 

    5 

  1 

  53 

168 

65284)109 

59444 

  599 

    5 
  15 

  53 

1687 

65284)109 

59444 

  599 

    5 

  15 

  533 

16878 

65284)109 

59444 

  599 

    5 



    

 

In Leonardo’s form, 
10  9  8
7  4  1  means 

10

7

109

4

1098

1 ++


, but 

3

2

4

1

3

2

4

1   means  + . This was one of the only flaws in Leonardo’s 

method’s. 

 

Practica Geometriae 

 

This book contains a proof of Hero’s formula for the area of a triangle in 

terms of its sides a, b and c: 

)(  where, ))()((
2

1 cbascsbsassA ++=−−−=  

It also has a proof that the medians of a triangle divide each other in the 

ratio 2:1. 

 

Flos 

 

Compared to Liber Abaci and Liber Quadratorum, very little is known 

about the details of both Flos and Practica Geometriae. Flos concentrates 

on cubic equations. 

 

Liber Quadratorum 

 

Following are the details from all 24 propositions from the book.13 

 

Proposition 1: ‘Find two square numbers which sum to a square number.’ 

This is a simple method of generating Pythagorean triplets. It utilises the 

fact that the odd numbers from 1 to (2n – 1) add to n2, which is proven in 

Proposition 4. An odd square is chosen as the first square. Then every 

odd number less than this is added together, giving a square. As the next 

odd after this set is a square, adding it also produces a square, thereby 

completing the triplet. 

For example, 9 is an odd square. Adding every odd number less than 9 

gives 1 + 3 + 5 + 7 = 16, which is 42. Therefore, 16 + 9 = 1 + 3 + 5 + 7 + 

9 = 25 = 52.  

 

Proposition 2: ‘Any square number exceeds the square immediately 

before it by the sum of the roots.’ 

This proposition examines (n+1)2 = n2 + 2n + 1 = n2 + (n+1) + n. 

Leonardo looks at the simple case described in the problem, and shows 

that if (n+1) + n is a square, a Pythagorean triplet is created. Leonardo 

looks also at the variation (n+1)2 – (n-1)2 = 4n. He notes that if 4n is a 

square, and therefore n is a square, the result gives another method of 

generating a Pythagorean triplet. Finally, he shows that the difference 



    

 

between any two squares is equal to the product of the sum of their roots 

and the (positive) difference of their roots, that is a2 – b2 = (a + b)(a – b). 

The examples given in Liber Quadratorum are: 

112 = 121 = 100 + 21 = 102 + 11 + 10. 

If n = 12, (n+1) + n = 13 + 12 = 25 = 52.  132 = 122 + 52. 

An example of the variation form given by Leonardo is: 

If n = 9 (a square), 4n = 36, also square. Then n+1 = 10, and 102 = 100, 

and n-1 = 8, and 82 = 64. 100 – 64 = 36, giving the triplet 62 + 82 = 102. 

 

Proposition 3: ‘There is another way of finding two squares which make a 

square number with their sum.’ 

In this proposition, Leonardo demonstrates yet another method of 

generating Pythagorean triplets, that he describes as obtaining from Book 

X of Euclid’s Elements. He proves the form  

((a2 + b2)/2)2 = ((a2 – b2)/2)2 + (ab)2 by using another identity, that of 

dividing a line segment into equal and unequal parts. The formula is also 

widely known in the form a2 + b2, a2 – b2, 2ab. 

 

Proposition 4: ‘I wish to demonstrate how a sequence of squares is 

produced from the ordered sums of odd numbers which run from one to 

infinity.’ 

This proves the important result that is used in various other Propositions 

in the book, that 1 + 3 + 5 + … + (2n – 1) = n2. The argument is based on 

Proposition 2, the difference between two consecutive squares is the sum 

of their roots. Consecutive whole numbers are squared, and the 

differences are taken. These are in fact the odd numbers, except the final 

square is left. Summing all the differences gives the required result. 

Numerically;         12 = 1 

 22 – 12 = 3 

 32 – 22 = 5 

 42 – 32 = 7 

  :      :      : 

 n2 – (n-1)2 = 2n-1 

Summing both sides gives n2 = 2n-1 + … + 7 + 5 + 3 + 1, as expected. 

 

Proposition 5: ‘Find two numbers so that the sum of their squares makes 

a square formed by the sum of the squares of two other given numbers.’ 

This is again Pythagorean triplets, this time finding two sets with the 

same hypotenuse. Leonardo uses similar triangles to form his solution, 

looking at three cases; whether the squared sum of the two given squares 

is equal to, greater, or less than the squared sum of the other two 

numbers. Modern algebra removes the need for three different cases, so 



    

 

looking at one approach will be enough. If a and b are the given numbers, 

and a2 + b2 = c2; take two other numbers x and y, and let x2 + y2 = z2. 

Therefore, (x/z)2 + (y/z)2 = 1, and so multiplying both sides by c2 gives 

(xc/z)2 + (yc/z)2 = c2, as required. 

 

Proposition 6: ‘A number is obtained which is equal to the sum of two 

squares in two, three, or four ways.’ 

This proposition uses the identities: 

(a2 + b2)(c2 + d2) = (ac + bd)2 + (bc – ad)2 

                            = (ad + bc)2 + (ac – bd)2 

also mentioned earlier. These give the first two sums of squares. 

If a2 + b2 (or equally c2 + d2) is also a square, say e2, a third solution is 

e2(c2 + d2) = (ec)2 + (ed)2. If both a2 + b2 and c2 + d2 are square, the fourth 

solution, taking c2 + d2 = f2, is (a2 + b2)f2 = (af)2 + (bf)2. 

 

Proposition 7: ‘Find in another way a square number which is equal to the 

sum of two square numbers.’ 

This is another variation on generating Pythagorean triplets, utilising 

Proposition 6. If we choose our values to set bc – ad = 0, then 

(a2 + b2)(c2 + d2) = (ac + bd)2 = (ad + bc)2 + (ac – bd)2, the sum of two 

squares. To achieve bc – ad = 0, the ratio a:c must equal b:d. This gives 

the three required values. 

For example, if we have a = 3, b = 4, c = 6, d = 8; then 

(3*6 + 4*8)2 = (3*8 + 4*6)2 + (4*8 – 3*6)2 

               502 = 482 + 142 

 

Proposition 8: ‘Two squares can again be found whose sum will be the 

square of the sum of the squares of any two given numbers.’ 

This again makes use of Proposition 6. By setting c = a and d = b,  

 (a2 + b2)(c2 + d2) = (ad + bc)2 + (bd – ac)2 becomes 

(a2 + b2)2 = (2ab)2 + (b2 – a2)2. As a and b are the given numbers, the 

squares of the two numbers 2ab and b2 – a2 add to the square of the sum 

of the squares of the given numbers. This identity, for forming a 

Pythagorean triplet, was also arrived at in Proposition 3. 

 

Proposition 9: ‘Find two numbers which have the sum of their squares 

equal to a nonsquare number which is itself the sum of the squares of two 

given numbers.’ 

This is essentially the same as Proposition 5, but the sum of the squares is 

not restricted to being a square itself. The argument is made in the same 

manner, using proportionality. 

For example, if the two given numbers are 4 and 5, then 42 + 52 = 41. 

Take two numbers whose squares add to a square, such as 3 and 4, giving 



    

 

32 + 42 = 52. These four numbers become a, b, c, and d for the formula in 

Proposition 6. This gives (32 + 42)(42 + 52) = 25*41 = 1025. 

Two squares which add to 1025 are: 3*4 + 4*5 = 32, and 4*4 – 3*5 = 1. 

From this, 322 + 12 = 1025. Dividing through by 25 gives 

(32/5)2 + (1/5)2 = 1025/25 = 41, as required. Therefore, the answers are  

6 2/5 and 1/5. 

 

Proposition 10: Find the sum of the squares of consecutive numbers from 

the unity to the last.’ 

Leonardo begins by showing the following: 

n(n + 1)(2n + 1) = (n - 1)n(2n – 1) + 6n2, 

and as (n - 1)n(2n – 1) = (n - 1)((n - 1) + 1)(2(n - 1) + 1), the triple-

product on the previous value, this provides a recursive-type relation for 

the rest of the proof. He then uses a listed form similar to that in 

Proposition 4, using the difference of the n and n-1 triple-products, to get 

the 6n2 on its own. The lists are added, and all the terms other than the 

largest cancel out, leaving the sum of the squares terms. 

For example: 5(5+1)(2*5+1) – (5-1)5(2*5-1) = 6*52 

 4(4+1)(2*4+1) – (4-1)4(2*4-1) = 6*42 

 3(3+1)(2*3+1) – (3-1)3(2*3-1) = 6*32 

 2(2+1)(2*2+1) – (2-1)2(2*2-1) = 6*22 

 1(1+1)(2*1+1)     = 6*12 

Adding the rows gives: 5(5+1)(2*5+1) = 6(12+22+32+42+52), 

5*6*11 = 330 = 6(1+4+9+16+25) = 6*55, as required. 

 

Proposition 11: ‘Find the sum of the squares of consecutive odd numbers 

from the unity to the last.’ 

The method used here is essentially the same as the previous proposition, 

but only involves odd numbers. In this case, with the final summed odd 

number (2n-1), the identity required is the triple-product of the odd 

number, the next odd number, and their sum; 

(2n-1)(2(n+1)-1)((2n-1)+(2(n+1)-1)) =  

(2n-1)(2n+1)4n = (2(n-1)-1)(2(n-1)+1)4(n-1) + 12(2n-1)2 

or (2n-1)(2n+1)4n – (2n-3)(2n-1)4(n-1) = 12(2n-1)2 

Working the same way as before, adding a list of equations so terms 

cancel, leaving the largest of the triple-products and the sum of the 

squared terms. For example (with n = 4): 

 7*9*16 – 5*7*12 = 12*72 

 5*7*12 – 3*5*8 = 12*52 

 3*5*8 – 1*3*4 = 12*32 

 1*3*4 = 12*12 

Adding the rows and cancelling terms gives: 7*9*16 = 12(12+32+52+72) 

1008 = 12(1+9+25+49) = 12*84, as required. 



    

 

 

Proposition 12: ‘If two numbers are relatively prime and have the same 

parity, then the product of the numbers and their sum and difference is a 

multiple of 24.’ 

Leonardo shows this result by looking at different combinations of the 

two numbers and their sum and difference, and how they relate to each 

other in two different cases. In having the same parity, Leonardo means 

that they are either both even or both odd; and as they are relatively 

prime, they must both be odd. From this, their sum and difference will 

both be even. The two cases considered are that half of the difference is 

odd, and half the difference is even. In the odd case, it is shown that half 

of the sum of the numbers will be even. Therefore, half the sum 

multiplied by half the difference will be even. As we have half and half, 

one quarter of the product of the sum and difference is even, or the sum-

difference product is a multiple of 8. In the other case, half the difference 

is even. Therefore, half the sum multiplied by half the difference will be 

even, and again the sum-difference product will be a multiple of 8. 

Leonardo then considers the numbers themselves. As the numbers are 

odd and relatively prime, either one only will be a multiple of three, or 

neither will. If one is, then the total product will be a multiple of three, 

from this number, and also a multiple of 8 from the sum-difference 

product; and is therefore a multiple of 24. 

If neither number is a multiple of three, then on division by three they 

will have a remainder of either 1 or 2. If they both have the same 

remainder, the difference will then be a multiple of three, as the equal 

remainders will cancel out on subtraction. This gives the total a factor of 

three and a factor of 8 again, with the total product still a multiple of 24. 

If the remainders are different, adding the two numbers will result in an 

extra 3, so the sum will be a multiple of three, and the same result is 

evident. Leonardo uses the term ‘congruous’ for numbers of this form, 

namely mn(n-m)(n+m). 

Leonardo also mentions, but does not prove, the case where one of the 

two original numbers is even, when the formula he gives is  

(2m)(2n)(n-m)(n+m). One of m or n is even, therefore the product 

(2m)(2n) is a multiple of 8. The argument is the same as before to get the 

required factor of three, and the result stands. 

 

Proposition 13: ‘The mean of symmetrically disposed numbers is the 

centre.’ 

Here, Leonardo considers numbers arranged about a central number, such 

that the difference between a larger and the centre is equal to the 

difference between the centre and a smaller number, and that the numbers 

only occur in these pairs. From this, it is easy to see that each pair adds to 



    

 

twice the central number, and the total of all the numbers is equal to the 

central number multiplied by the number of numbers. If both sides are 

divided by the number of numbers, it is seen that the average is the result; 

that is the numbers added up and divided by the number of them. 

 

Proposition 14: ‘Find a number which added to a square number and 

subtracted from a square number yields always a square number.’ 

Leonardo again makes use of the sum of odd numbers concept in the 

proof of this proposition. An alternative statement for the proposition is 

find a number which added to one square makes another square, and also 

added to that square makes a third square. From this, it can be seen that 

the required number must be simultaneously equal to two different sums 

of consecutive odd numbers, as all three squares are sums of consecutive 

odd numbers. The two sets of odd numbers are also adjacent, and the 

required number is congruous, as described above. 

If the two equations are: 

x2 + c = y2 

y2 + c = z2 

then c will comprise of y-x odd numbers, centred on y+x, giving 

c = y2 – x2 as before, using Proposition 13; and also z-y odd numbers 

centred on z+y, giving c = z2 – y2. 

If we take two numbers, m, n, with n>m>0, to construct the solution; 

there are three cases Leonardo considers, involving the ratio of m to n and 

the ratio of (n-m) to (n+m). From these, there will be n(n-m) odd numbers 

placed symmetrically about m(n+m), and there will be m(n-m) about 

n(n+m). It can be seen that these come to the same total,  

mn(n-m)(n+m). Using Propositions 4 and 13, the following result is 

obtained: 

{[m(n+m) – n(n-m)]/2}2 + mn(n-m)(n+m) = {[m(n+m) + n(n-m)]/2}2 

{[m(n+m) + n(n-m)]/2}2 + mn(n-m)(n+m) = {[n(n+m) + m(n-m)]/2}2 

for the case m and n both odd or both even, with m/n > (n-m)/(n+m). The 

other cases, the same parity but m/n < (n-m)/(n+m), and with m and n of 

different parity, give very similar results. 

For example, if m = 3 and n = 5, then n-m = 2 and n+m = 8. This gives: 

n(n-m) = 10 odd numbers about m(n+m) = 24, and m(n-m) = 6 odd 

numbers about n(n+m) = 40, and the total is mn(n-m)(n+m) = 240. 

The equations are therefore: 

72 + 240 = 172 

172 + 240 = 232 

 



    

 

Proposition 15: ‘Square multiples of congruous numbers are congruous 

numbers.’ 

For the congruous number c: x2 + c = y2, y2 + c = z2. Therefore, if 

everything is multiplied by t2, the equations become (xt)2 + ct2 = (yt)2, 

(yt)2 + ct2 = (zt)2, and so ct2 is congruous for xt, yt, zt. 

 

Proposition 16: ‘I wish to find a congruous number which is a square 

multiple of five.’ 

Leonardo chooses a congruous number of the form 4mn(n-m)(n+m) to be 

a multiple of 5. He puts n = 5, and takes m to be a square such that m  n 

is also square, therefore m = 4. This makes the congruous number = 720, 

which is 144 * 5, a square multiple of 5. 

 

Proposition 17: ‘I wish to find a square number which increased or 

diminished by five yields a square number.’ 

This is the question from the tournament for Frederick II, mentioned in 

the introduction to Liber Quadratorum. It is a specific case of Proposition 

14, and it uses the result from the previous proposition. 

Using the formulae developed in Proposition 14, the following equations 

are obtained, with m = 4 and n = 5: 

n+m = 9 n-m = 1 

n/m = 5/4 < 9/1 = (n+m)/(n-m) - testing for which form to use 

 2n(n-m) = 10 2m(n-m) = 8 

2n(n+m) = 90 2m(n+m) = 72 

(1/2)(72 - 10) = 31 

(1/2)(72 + 10) = 41 

(1/2)(90 + 8) = 49 

 312 + 720 = 412 and 412 + 720 = 492 

Dividing through by 144 gives the required result: 

(31/12)2 + 5 = (41/12)2 and (41/12)2 + 5 = (49/12)2 

 

Proposition 18: ‘If any two numbers have an even sum, then the ratio of 

their sum to their difference will not be the same as the ratio of the larger 

to the smaller.’ 

This means to show that n/m  (n+m)/(n-m) for n > m > 0 

If we suppose that n/m = (n+m)/(n-m), then n(n-m) = m(n+m) or 

n2 –nm = mn + m2 → m2 + 2mn = n2: add n2 to both sides 

→ m2 + 2mn + n2 = 2n2 → (m+n)2 = 2n2 

But the ratio of two whole squares cannot equal 2, giving a contradiction, 

and therefore the initial statement must be true. 

Leonardo uses a slightly different method to obtain the same result, 

utilising the familiar sum of odd numbers theory. 

 



    

 

Proposition 19: ‘Find a square number for which the sum and difference 

of it and its root is a square number.’ 

The solution of this comes from the congruous number equations: 

y2 - c = x2 and y2 + c = z2 

Dividing through by c gives: 

y2/c – 1 = x2/c and y2/c + 1 = z2/c 

Multiplying by y2/c, we obtain the result: 

(y2/c)(y2/c) – (y2/c) = (x2/c)(y2/c) and  

(y2/c)(y2/c) + (y2/c) = (z2/c)(y2/c) 

or 

(y2/c)2 – (y2/c) = (xy/c)2 and (y2/c)2 + (y2/c) = (yz/c)2 

as required. 

For example: 

25 – 24 = 1   25 + 24 = 49 

25/24 – 1 = 1/24   25/24 + 1 = 49/24 

(25/24)2 – (25/24) = (5/24)2 (25/24)2 + (25/24) = (35/24)2 

 

Proposition 20: ‘Similarly, a square number must be found which when 

twice its root is added or subtracted always makes a square number.’ 

This is essentially the same as the previous proposition, but the equations 

are multiplied by two when the ‘1’ is evident. 

(from above) 

y2/c – 1 = x2/c and y2/c + 1 = z2/c multiply by 2 

2y2/c – 2 = 2x2/c and 2y2/c + 2 = 2z2/c 

We now multiply both by 2y2/c: 

(2y2/c)(2y2/c) – 2(2y2/c) = (2x2/c)(2y2/c) and  

(2y2/c)(2y2/c) + 2(2y2/c) = (2y2/c)(2z2/c) 

or 

(2y2/c)2 – 2(2y2/c) = (2xy/c)2 and (2y2/c)2 + 2(2y2/c) = (2yz/c)2 

 

Proposition 21: ‘For any three consecutive odd squares, the greatest 

square exceeds the middle square by eight more than the middle square 

exceeds the least square.’ 

If the three consecutive odd squares are (2n+1)2, (2n+3)2 and (2n+5)2, 

then the difference between the pairs is: 

(2n+5)2 - (2n+3)2 = 2*(4n+8) and (2n+3)2 - (2n+1)2 = 2*(4n+4) 

and the difference between the differences is 

(8n+16) – (8n+8) = 8, as said in the beginning. 

This gives a principle for generating odd squares: 

12 = 1 

32 = 9 = 1 + 8 

52 = 25 = 1 + 8 + 2*8 

72 = 49 = 1 + 8 + 2*8 + 3*8 



    

 

 

Proposition 22: ‘I wish to find in a given ratio the two differences 

between three squares.’ 

Expressed in modern notation, this is: 

x2 + ta = y2 and y2 + tb = z2 

or (y2 – x2)/(z2 – y2) = ta/tb = a/b, the given ratio. 

If a = b, that is the ratio is 1, this becomes the same problem as 

Proposition 14. 

Leonardo uses Propositions 4 and 21 in his proof of this proposition, 

which is also found in Book II of Diophantus’ Arithmetica. 

Leonardo considers various cases for the values a and b, beginning with  

b = a + 1. As shown previously, consecutive odd squares differ by a 

multiple of 8, and so, taking the three odd squares a, a+1, a+2: 

(2(a+1)-1)2 – (2a-1)2 = (1+8+…+8a) – (1+8+…+8(a-1)) = 8a, and 

(2(a+2)-1)2 – (2(a+1)-1)2 = (1+8+…+8(a+1)) – (1+8+…+8a) = 8(a+1) 

and the ratio of the differences is 8a/8(a+1) = a/(a+1) = a/b as required. 

The next case treated is when a and b are consecutive odd numbers. The 

formula required is an adaptation of Proposition 21: 

(2p)2 = 4 + 3*4 + 5*4 + … + (2p-1)*4, summing to form an even square. 

With the differences acquired in the same manner as before from the 

squares of 2(t-1), 2t and 2(t+1); the ratio becomes 4(2t-1)/4(2t+1) =  

(2t-1)/(2t+1) = a/b. 

Leonardo also gives an example where a and b are squares, namely a = 

16 and b = 25. Taking the geometric mean of these gives c = 20; therefore 

the three squares are 162 = 256, 202 = 400 and 252 = 625. 400 – 256 = 

144, and 625 – 400 = 225, and 144/225 = 16/25 = a/b. 

For problems that do not fit into any of the previous cases, Leonardo 

gives a vague method, outlined by another example: 

If a/b = 2/9, then find a ‘suitable’ ratio of multiples of 8 in the multiples 

of the ratio, that is 2/9, 4/18, 6/27, … In 4/18, Leonardo finds his 

requirements, as 18 = 5+6+7, and the solution stems from 4/18 = 

(4*8)/(5*8+6*8+7*8). 

(4*8+3*8+2*8+8+1) – (3*8+2*8+8+1) = 92 – 72 = 4*8, and 

(7*8+6*8+…+8+1) – (4*8+3*8+2*8+8+1) = 152 - 92 = 8*(7+6+5), so 

giving the solution. 

 

Proposition 23: ‘I wish to find three squares so that the sum of the first 

and the second as well as all three numbers are square numbers.’ 

This follows easily from Proposition 4. Beginning with two squares that 

add to a square, another square is found by adding up all the odd numbers 

less than this sum square. This gives a square, which added to the sum 

square, gives a square as well, as a sequence of odd numbers is still 

evident. For example, 9 + 16 = 25. Adding all odd numbers less than 25 



    

 

gives 144, a square, and adding 25 to this gives 169, also a square. A 

formula can also be used generate the next square; if a is a square, then 

a + ((a-1)/2)2 = ((a+1)/2)2, and from the example, a = 25, (a-1)/2 = 12, 

and (a+1)/2 = 13, the same results as before. 

 

Proposition 24: ‘I wish to find three numbers which added together with 

the square of the first number make a square number. Moreover, this 

square, if added to the square of the second number, yields thence a 

square number. To this square, if the square of the third number is added, 

a square number similarly results.’ 

This problem was given to Leonardo by Theodorus, a philosopher in 

Frederick’s court. Put more simply, we want x, y, z, such that x + y + z + 

x2 is a square, x + y + z + x2 + y2 is a square, and x + y + z + x2 + y2 + z2 is 

also a square. The solution utilises Proposition 23 to find a set of squares 

to begin working with. Leonardo uses the following equations: 

62 + 82 = 102 and 102 + 242 = 262. Then he works to find a number x so 

that: x + 8 + 24 + x2 = 62; and then this with 62 + 82 = 102 and 102 + 242 = 

262 gives the solution to the problem. Simplified, x is the solution to  

x2 + x + ¼ = 17/4, and x = ½(-1+17). Leonardo then has to find a 

rational solution to the problem, by looking at multiples of the whole 

numbers he started with, namely 6, 8, 10, 24, and 26; that is he needs to 

find rational solutions to: x + 8k + 24k + x2 = (6k)2, (6k)2 + (8k)2 = (10k)2, 

(10k)2 + (24k)2 = (26k)2. Substituting R=6k into the first equation gives 

x2 + x = R2 - (16/3)R. With another substitution of x = R – a, the equation 

becomes (R – a)(R – a + 1) = R2 - (16/3)R. Solving for R gives  

R = 3a(a-1)/(6a-19), and so x = a(3a-16)/(19-6a). For 19/6 < a < 16/3, x 

and R will be positive. Leonardo chooses a = 4, giving x = 16/5, y = 48/5, 

and z = 144/5, a solution to the problem. Leonardo also calculates an 

integer solution following the same method with different starting values. 

It is x = 35, y = 144, and z =360. He goes on to generalize the formula for 

more variables, and gives a solution for four unknowns, w = 1295, x = 

31968/7, y = 79920/7, and z = 79920. 

 

The Fibonacci Sequence 
 

The Fibonacci Sequence gains its name from its appearance in a problem 

from Liber Abaci: 

A young pair of rabbits is put in an enclosure. They produce one pair of 

offspring each month, and the offspring cannot breed until their second 

month, when they too produce one pair of offspring per month. Assuming 

no mortality, how many rabbits would there be in total after one year? 

This begins the sequence, and at the end of the first month, there is still 

only one pair. They reproduce, so at the end of the second month there 



    

 

are two pairs. At the end of the third month, the original pair have 

reproduced again, but the new pair have not, making three pairs. At the 

end of the fourth month, both of the first two pairs have reproduced, but 

again the newest pair have not, giving five pairs. In each subsequent 

month, all those alive two months ago have added another pair to the 

number that were alive last month. This provides the well-known 

formula: 

fn = fn-1 + fn-2 

 

There are various other ways of describing the problem with the same 

numerical outcome. If instead of counting all the rabbits at each month, 

we only count the number produced, and the rabbits only produce a pair 

for two generations, the same sequence is obtained. It also comes about in 

the study of the genealogy of the bee. A male bee has only a mother, but a 

female bee has a mother and a father. Working backwards in time in this 

case, one male bee has, from the previous generation, one female parent. 

She, on the other hand, has both one male and one female predecessor, 

making two relatives. This male has only one mother, and the female has 

one mother and one father, making three in this generation. Consider the 

following diagram: 

 

Generation Males Females Total 

n 1 0 1 

n-1 0 1 1 

n-2 1 1 2 

n-3 1 2 3 

n-4 2 3 5 

n-5 3 5 8 

As can be seen, all three totals form a Fibonacci sequence, going back 

through the generations. Note that zero is sometimes included in the 

sequence as the ‘zero-th’ term.12 

 

There are many interesting properties of the sequence, involving terms 

that are consecutive or nearly consecutive. For example: 

fn+1.fn-1 = fn
2 + (-1)n 

fm+n = fn-1.fm + fn.fm+1 
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GCD(fn, fn+1) = 1 (that is, relatively prime) 

f1 + f2 + … + fn = fn+2 – 1 
for the sum of the first n Fibonacci numbers. Also the sum of the squares 

of the first n Fibonacci numbers: 

f1
2 + f2

2 + … + fn
2 = fn.fn+1 

a formula that arises from fitting the squares together to form a rectangle. 

As the side of each square is the sum of the sides of the two before it, a 

rectangle results: 

 

Another intriguing property of this square layout is that a logarithmic 

spiral will fit perfectly through common vertex of each consecutive pair. 

(My diagram is a circular-arc approximation). 

There is an exact formula for any Fibonacci number: 
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This is known as Binet’s Formula, after the Frenchman Jacques Binet, 

who worked it out in 1843. It was also known to Leonhard Euler and 

Daniel Bernoulli a century earlier. 

The formula develops from the fact that the ratio of consecutive 

Fibonacci numbers approaches the Golden Ratio: 

6180339.1
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The Golden Ratio, , itself has some interesting features: 

2 =  + 1 

1/ =  – 1 

1 1 

2 3 



    

 

The Golden Ratio is also found in a regular pentagon. If the pentagon has 

sides of length 1, then the width will be 1.6180339… Related to this is 

the fact that an isosceles triangle with a base angle of 72º has a side-to-

base ratio of 1.6180339… Because of this, 72º is sometimes known as the 

“Golden Angle”. 

 

Some of the formulae relating to the Fibonacci Sequence can be derived 

from a matrix form: 
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To prove this, first check that the first step works: 
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and the inductive proof works. Many more relations between various 

Fibonacci numbers can be obtained from the matrix form, such as: 
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The Fibonacci Sequence can also be found in Pascal’s Triangle. If the 

triangle is drawn with the left side vertical, the 45º totals will be the 

Fibonacci Sequence: 
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One of the most interesting occurrences of the Fibonacci Sequence is in 

nature. Because of the way leaves and petals are generated, they often 

form a Fibonacci number. The seeds on the head of a sunflower form two 

sets of spirals, one clockwise and one anti-clockwise. There are normally 

34 spirals in one direction and 55 in the other. The ‘cells’ on a pinecone 

or a pineapple are also two consecutive Fibonacci numbers. Leaves along 

a stem also display similar behaviour. As the shoot or flower grows, the 

buds appear around the tip one at a time. Each successive bud grows by 

default into the largest gap among the previous buds. If the first two buds 

are not exactly opposite each other, the bud sequence will be distributed 

around the tip in the multiple-spiral pattern as the shoot grows. In the 

‘unwrapped’ shoot diagram, 



    

 

the bud numbered 25 grows in the gap among 17, 20 and 22, continuing 

the steep spiral through 5, 10, 15 and 20, a difference of 5; and the 

shallow spiral though 16, 19 and 22, a difference of 3. 0 is the position of 

the first bud, at 0º. The Fibonacci pattern is more noticeable for small 

numbers, as too much randomness can be evident with larger numbers of 

buds.7 

There are some unanswered theoretical questions regarding the sequence, 

such as how many terms are prime numbers? There are 12 in the first 100 

terms, but it is not known how they continue. Also, there are only two 

squares in the first 100 terms, 1 and 144 (f1, f2, and f12).  



    

 

Biographies 

 

I include small biographies of the people mentioned in this essay. 

 

Abû Kâmil5 

A textbook writer living in Egypt, his full name was Abû-Kâmil Shoja 

ben Aslam. He was born in 850 and died in 930. 

 

Al-Khowârizmî20 

Al-Khowârizmî was born around 780AD. His full name was Abū Ja-far 

Muhammad ibn Mū sā al-Khwā-rizmī. He became a member of ‘Dār al-

Hikma’, (House of Wisdom) in Baghdad. He worked on astronomy, 

mathematics, made maps of the Mediterranean and the Near East, and 

made an astrolabe, sundials and calendars. He wrote a practical 

mathematics handbook entitled ‘Al-Kitāb al-mukhtasar fīhisāb al-jabr 

wa’l muqābala’, which used ‘shay’ (meaning ‘thing’) as a variable and 

described Hindu numerals and operations with them. He died around 

850AD. A corruption of his name gives us the term algorithm, and the 

word algebra comes from ‘al-jabr’ in the title of his work. 

 

Daniel Bernoulli20 

This Bernoulli was born in Gröningen, the Netherlands, in 1700; the 

second son of Johann Bernoulli. He studied logic, philosophy and 

mathematics, gaining a Masters degree at 16. He went on to study 

medicine, finishing that course of study in 1721. Unable to get a job in 

Switzerland, he went to Italy to continue studying medicine and 

mathematics. In 1725, he went to the St. Petersberg Academy of Sciences 

for a teaching position. There, he worked on muscular contraction, the 

optic nerve, oscillations, the parallelogram of forces, and probability. He 

later took a position in botany in Basel, just to get back to Switzerland. In 

1737, he made calculations of the work done by the heart, and in 1738 

wrote ‘Hydrodynamica’ on fluids, noting that pressure decreases as fluid 

velocity increases, and that pressure is proportional to temperature. He 

was a popular lecturer, and became a professor of physiology in 1743. He 

went on to gain the chair of Natural Philosophy in 1750. He studied the 

conservation of energy and acoustics, finding mathematical descriptions 

of sound waveforms and natural frequencies of musical instruments. 

Bernoulli died on March 17, 1782 in Basel. 

 

Jacques P. M. Binet4 

Binet was born in 1786, and lived in France. He is known to have worked 

on the matrix determinant around 1812, formulating a multiplication rule 



    

 

in relation to solving simultaneous equations. He also worked with the 

explicit formula for the Fibonacci Sequence, in 1843. He died in 1856. 

 

Baldassarre Boncompagni13 

Boncompagni was a 19th century scholar in Italy, who edited and 

published the complete works of Leonardo after finding them in the 

Ambrosian Library in Milan, in two volumes entitled ‘Scritti di Leonardo 

Pisano’. 

 

Diophantus20 

Diophantus was alive around 270AD in Greece, although he may have 

been born in Alexandria. He worked on linear mathematics and early 

algebra, especially what are now known as Diophantine Equations. He 

wrote ‘Arithmetica’, on abstract arithmetic and early forms of algebra, 

and was known to have used a symbol for an unknown quantity in 

equations. 

 

Dominicus6 

An astronomer to Frederick II. Dominicus introduced Leonardo to the 

Emperor’s court before the tournament. 

 

Euclid of Alexandria20 

Euclid was alive around 300BC, and he may have attended Plato’s 

Academy in Athens. He taught at Ptolemy’s Museum/Library, and was 

known as a good teacher and a nice person. His main work was the 

‘Elements’, which drew on Hippocrates, Pythagoras, and Menaechmus. It 

consisted of 13 books, containing around 450 propositions. It was both an 

accumulation of previous mathematicians work and Euclid’s own original 

concepts. The ‘Elements’ was used by later scientists such as Galileo, 

Newton, Archimedes and Eratosthenes. He also wrote ‘Data’ on plane 

geometry, ‘Phenomena’ on spherical geometry, ‘Optics’ on perspective 

and related subjects, ‘Pseudaria’ which included mathematical fallacies of 

the day and also valid theorems contrary to them, ‘Porisms’ on higher 

geometry, ‘Conics’, and ‘Surface-Loci’ on points and surfaces. 

 

Leonhard Euler20 

Euler was born on April 17, 1707, in Basel, Switzerland. His father was a 

pastor and also a mathematician, who wanted Euler to inherit his 

pastorship. Euler studied religion and mathematics, gaining a Masters 

degree at 17. He started losing his sight at an early stage. Euler was 

taught by the Bernoullis, and they wanted him to concentrate on maths. In 

1727, Euler went to the St. Petersberg Academy of Sciences for a medical 

position. He soon moved to the mathematics department, joining Daniel 



    

 

Bernoulli. When Bernoulli left, Euler assumed the top position. Euler 

covered many fields, including analytic geometry, differential and 

integral calculus, spherical trigonometry, algebraic series, number theory, 

hydrodynamics, graph theory (after working on the ‘Konigsberg Bridges’ 

problem in 1736), and also worked on geography and a system of weights 

and measures for the Russian government. He moved to Berlin in 1740 

after an invitation to the Berlin Academy from Frederick the Great. There 

he worked on pension plans, navigation and coinage for the government, 

and published his work on ‘Calculus of Variations’ in 1746. He was made 

a Fellow of the Royal Society of London, and made some early progress 

on Fermat’s Last Theorem. In 1766, he returned to Russia, and soon lost 

his eyesight completely. He kept on working, having a remarkable ability 

at mental arithmetic, looking at lunar theory, phases and tides. He wrote a 

treatise on integral calculus in 1768-70. Euler married twice, marrying his 

first wife’s half-sister (who was also her aunt) after the first wife’s death. 

Only a few of his many children survived their early years. Euler died on 

September 8, 1783, soon after calculating the orbit of the newly found 

Uranus. 

 

Frederick II2 

Frederick was born on December 26, 1194, in Jesi, Ancona, Italy. He was 

a member of the House of Hohenstaufen, the son of Henry VI and 

Constance, the heiress of the Two Sicilies. He was left an orphan in 1198, 

and brought up under wardship to the Pope. In 1208, he was in the 

government of the Two Sicilies, and in 1212 was made Aspirant to the 

Crown of Germany by the Pope as opposition to King Otto IV. He was 

duly elected by the Ghibelline Party, and crowned as King of Germany at 

Aachen in 1215. He was then crowned Holy Roman Emperor in 1220 by 

Pope Honorius III. He tried to combine Italy and Germany into one 

country. Between 1228 and 1229, he led a crusade to the holy land, and 

recovered Jerusalem by treaty and without fighting. He maintained his 

court at Naples, and surrounded himself with many scholars; he also 

founded the University of Naples. He reportedly spoke Latin, Italian, 

German, French, Greek and Arabic, and wrote a book on falconry and the 

care of falcons. He was hot tempered and ruled with an iron fist, but in a 

fair and well-supported manner. He argued with the Pope, and was 

excommunicated three times. He centralised authority in the monarch and 

made legislative reforms while he was in power. Frederick was Emperor 

until his death on December 13, 1250 in Fiorentino. 

 

Hero (or Heron) of Alexandria20 

Hero was alive around 65-125AD, and was a prolific writer and scholar, 

particularly concerning geometry and engineering. His books included 



    

 

‘Metrica’ about geometry, areas and volumes, containing Hero’s formula 

for the area of a triangle; ‘Definitions’, a catalogue of geometry terms; 

‘Geometrica’, an introduction to geometry; ‘Sterometrica’, about solid 

geometry such as spheres and pyramids; ‘Pneumatica’, discussing devices 

powered by steam and compressed air, such as a compressed-air powered 

catapult; ‘Mechanica’, on levers, pulleys and compound pulleys, screws 

and designs for mechanically-powered religious ‘miracles’; ‘Automata’, 

machines including mechanical puppets; ‘Dioptra’, about surveying and 

the dioptra, an instrument similar to a theodolite; ‘Catoptrica’, on mirrors 

and refraction; and ‘Baroulkos’, a lost volume on lifting heavy objects, 

presumably with mechanical assistance. He was interested in the practical 

applications of science, designing and building the Aeolipile, a steam 

powered rotor device,14 predating the modern steam turbine by nearly two 

thousand years. He also worked on catapults; time keeping including a 

water clock, vault construction, and coin-operated machines. 

 

Johannes of Palermo16 

Court scholar to Frederick II, who set the questions in the tournament for 

Leonardo. 

 

Guillaume Libri8 

A 19th century historian, who may have been the first to give the name 

‘Fibonacci’ to Leonardo Pisano. Libri was born in 1803, and died in 

1869. 

 

Blaise Pascal20 

Pascal was born on June 19, 1623, in Clermont, Auvergne, France. His 

mother, Antoinette, died when he was three. Pascal was taught at home, 

mostly by his father, Ètienne. In 1631, the family moved to Paris, where 

Pascal started his formal education in mathematics and ancient languages. 

In 1639, his father got a job in the tax office in Rouen, and the family 

moved again. In 1640, at only 16, Pascal wrote a treatise on projective 

geometry and conics, containing over 400 propositions, including 

‘Pascals mystic hexagram’, that showed how the three points of 

intersection of the extended opposite sides of a hexagon inscribed in a 

conic section lie in a straight line. He developed a mechanical calculator 

to help his fathers tax work, worked on atmospheric and barometric 

pressure, vacuums, invented the syringe and the hydraulic press, 

discovered that pressure is transmitted equally to all of a fluid, and looked 

at hydrostatics. In 1646, he became a Jansenist (anti Jesuit Catholic), and 

moved back to Paris in 1647. He corresponded with Pierre de Fermat in 

1654 on probability and games of chance, and studied the arithmetic 

triangle that now bears his name, in which each entry is the sum of the 



    

 

two entries above it, during work on binomial expansions. This laid much 

of the groundwork for Isaac Newton to formulate the general binomial 

theorem. He also studied the cycloid, and found the centre of area of a 

segment of cycloid, and the volume and surface area of a revolved 

cycloidal segment. Pascal became very sick in 1658, and died on August 

19, 1662 at his sisters home. 

 

Plato of Tivoli9 

Translated many works into Latin in the 12th century, including an 

encyclopaedia by Savasorda, works on astronomy by al-Battânî, and 

work on spherics by Theodosius. 

 

Savasorda11 

Also known as Abraham bar Hiyya ha-Nasi. Savasorda may have been a 

co-worker of Plato of Tivoli. He wrote on arithmetic, geometry, optics 

and music. He was Jewish, but lived in Spain; and died in 1136. 

 

Michael Scot16 

Scottish astronomer and astrologer to Frederick II. Leonardo dedicated 

the second edition of Liber Abaci to him. 

 

Theodorus20 

A philosopher in the court of Frederick II. Leonardo corresponded with 

him, and one letter has survived, called Epsistola ad Magistrum 

Theodorum. 
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