

OMG22 October 9th, 2022

Fancy Problem

A **fancy** triangle is an equilateral triangular array of integers such that the sum of the three numbers in any unit equilateral triangle is a multiple of 3.

For example:

is a fancy triangle with three rows because the sum of the numbers in each of the following four unit equilateral triangles is a multiple of 3 - note we include upside down triangles!

Suppose that a fancy triangle has **ten rows.** How many individual numbers in the triangle could be multiples of three?

Proof Problem

You might know the divisibility by 9 test: a number is divisible by 9 if (and only if) the digits add to a multiple of 9. Why not prove it?

Average Problem ...

A sequence a_1 , a_2 , ..., a_{100} has integers in which the first and last terms are equal to 0.

Except for the first and last terms, each term a_i is larger than the average of its neighbours a_{i-1} and a_{i+1}.

What is the smallest possible value for the term a_{19} ?

Alt Problem

Each term of an infinite sequence below is either 1 or 0.

a1, **a**2, ..., **a**n, ...

No two consecutive terms add to the sum of the next two terms, and similarly for any three consecutive terms and the next three consecutive terms.

Prove that if $a_1 = 0$, then $a_{2020} = 1$

Hint Problem

For which problem is this a hint?

