Ev

MathsJam South

Fancy Problem

A fancy triangle is an equilateral triangular array of integers such that the sum of the three numbers in any unit equilateral triangle is a multiple of 3 .
For example:
${ }_{5} \quad 9_{4}^{10} \quad 6$
is a fancy triangle with three rows because the sum of the numbers in each of the following four unit equilateral triangles is a multiple of 3 - note we include upside down triangles!

Suppose that a fancy triangle has ten rows. How many individual numbers in the triangle could be multiples of three?

Proof Problem

You might know the divisibility by 9 test: a number is divisible by 9 if (and only if) the digits add to a multiple of 9 .
Why not prove it?

Average Problem

 A sequence a_{1}, a_{2}, \ldots, aleo has integers in which the first and last terms are equal to 0 .

Except for the first and last terms, each term a_{i} is larger than the average of its neighbours $\mathrm{a}_{\mathrm{i}-\mathrm{I}}$ and $\mathrm{a}_{\mathrm{i}+1}$.

What is the smallest possible value for the term a_{19} ?

Alt Problem

Each term of an infinite sequence below is either 1 or 0 .

$$
a_{1}, a_{2}, \ldots, a_{n}, \ldots
$$

No two consecutive terms add to the sum of the next two terms, and similarly for any three consecutive terms and the next three consecutive terms.

Prove that if $a_{1}=0$, then $a_{2020}=1$

Hint Problem

For which problem is this a hint?

$$
\begin{array}{r}
10=9+1, \\
100=99+1, \\
1000=999+1,
\end{array}
$$

